

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ИНСТИТУТ ТЕХНОЛОГИЙ (ФИЛИАЛ) ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» В Г. ВОЛГОДОНСКЕ РОСТОВСКОЙ ОБЛАСТИ

(Институт технологий (филиал) ДГТУ в г. Волгодонске)

Методические указания по организации

самостоятельной работы

по дисциплине

«Физико-технологические основы методов обработки»

15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств профиль Технология машиностроения 2022 года набора

Волгодонс 2022

Лист согласования

Методические указания по дисциплине «Физикотехнологические основы методов обработки» составлены в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования по направлению подготовки (специальности) 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств

« » 9 «26» 2022 .

Оглавление

1. ОБЦ	цие п	оложения			 5
2. CO,	ДЕРЖ	АНИЕ ДИСЦИ	ПЛИНЫ		 6
				ытематического	6
дисц	иплині	Ы			 7
3. СОД	[ЕРЖА	.НИЕ КОНТРОЛ	ТЬНОЙ РАБ	ОТЫ	 16
ПРИЛО	ЭЖЕНІ	⁄IЕ			 19

1. ОБЩИЕ ПОЛОЖЕНИЯ

Методы обработки (МО) составляют основу содержания технологии изготовления деталей машин, приборов и инструмента.

Изучение МО и всего курса «Физикометодов обработки» технологические основы осуществляется в ходе лекций, практических занятий, выполнения контрольной работы и самостоятельного дисциплины. В этой разделов усвоения связи, предусматривается общий обзор, классификация структуризация схем методов обработки, критериев контроля параметров процесса и качества обработки, изучение физических основ технологических И и особенностей обработки возможностей типовых поверхностей, деталей машин,

перспектив совершенствования и создания новых MO.

2. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

2.1. Цели и задачи дисциплины

Целью изучения дисциплины «Физикотехнологические основы методов обработки» является формирование у студентов устойчивых знаний о сущности современных методов обработки (МО), составляющих основу содержания технологии изготовления деталей машин, приборов и других механизмов.

В соответствии с целью в процессе преподавания дисциплины решаются следующие задачи формирования у студентов комплекса знаний и умений в области:

- классификации и структурных схем различных методов обработки;
 - критериев контроля параметров процесса и качества обработки;
 - сущности и физической основы МО металлическим лезвийным и абразивным инструментом;
 - сущности и физические основы
 МО поверхностным пластическим

деформированием (ППД);

- сущности и физические основы MO с использованием другихвидов энергии;
- сущности и физические основы комбинированных MO;
 - технологических возможностей и особенностей обработки типовых поверхностей;
 - перспектив совершенствования и создания новых методов обработки.

2.2. Содержание разделов

тематического плана дисциплины

- <u>Раздел 1.</u> Общий обзор, классификация и структурные схемы методов обработки.
- 1.1. Общая характеристика применяемых методов обработки (МО), тенденции их совершенствования и развития.
 - 1.2. Определение и структурная схема методов обработки.
- 1.3. Классификационные признаки и классификация методов обработки:

- по виду затрачиваемой энергии;
- по производительности формообразования;
- по сущности процесса, виду применяемого инструмента и оборудования;
 - по технологическому назначению.
 - Классификационные группы и их характеристики.

Схематизация обозначений методов обработки. Формализация методов обработки. Распределение методов обработки по классификационным группам.

- <u>Раздел 2.</u> Понятие и общие сведения о качестве поверхности деталей машин.
- 2.1. Понятие качества поверхности. Роль ученых в развитии учения о качестве поверхности. Параметры, характеризующие качество поверхности: геометрические (шероховатость), физико-механические (остаточные напряжения, микротвердость), структура поверхностного слоя, ГОСТ 2789-73 «Шероховатость поверхности».
- 2.2. Влияние параметров качества поверхности на эксплуатационные свойства деталей. Характеристика важнейших эксплуатационных свойств деталей:

износостойкость, усталостная прочность, коррозионная стойкость, усталостно-коррозионная стойкость. Понятие долговечности и надежности деталей и изделий. Экономическая проблемы решения значимость повышения качества поверхности и эксплуатационных свойств деталей технологическими методами. Влияние параметров качества поверхности на износостойкость, прочность, коррозионную стойкость, усталостную усталостно-коррозионную стойкость, стабильность неподвижных посадок. Понятие подвижных И оптимальных параметрах качества поверхности. Понятие о технологи- ческой наследственности.

<u>Раздел 3.</u> Физические основы и технологические возможности механических методов обработки.

- 3.1. Методы механической обработки (М). Общая характеристикаи классификация. Физическая сущность.
- 3.1.1. Методы обработки металлическим лезвийным инструментом: резцами, фрезами, сверлами, зенкерами, развертками, протяжка- ми и др. Физическая сущность и технологические возможности.
 - 3.1.2. Методы обработки абразивно-алмазным

инструментом и свободным абразивом:

- шлифование круглое наружное и внутреннее, бесцентровое, плоское, планетарное, фасонное, ленточное и др.;
 - хонингование;
 - суперфиниш;
 - шлифование и полирование абразивными лентами;
 - абразивно-жидкостная обработка;
 - галтовка;
 - вибрационная обработка в абразивной среде;
 - ультразвуковые методы обработки.

Сущность и технологические возможности.

- 3.1.3. Методы обработки пластическим деформированием. Физическая сущность. Классификация, сущность и технологические возможности:
- формообразующие (накатывание и раскатывание резьб, накатывание зубчатых колес, выдавливание фасонных поверхностей, клеймение, калибрование, редуцирование);

- отделочно-упрочняющие: дорнование, раскатывание и обкатывание, обработка щетками;
- выглаживание, вибрационное обкатывание, вибрационный наклеп;
- центробежно-шариковое упрочнение,
 дробеструйная обработка
 и др.
 - <u>Раздел 4.</u> Физические основы и технологические возможности немеханических методов обработки.
 - 4.1. Электрические методы обработки.

Физическая сущность (Э). Классификация, технологические возможности:

- электроэррозионная обработка;
- электроимпульсная обработка;
- электроискровая обработка.
- 4.2. Химические методы обработки (Х).

Физическая сущность. Классификация, технологические возможности:

химическое фрезерование (размерное контурное травление);

- химическое полирование.

- 4.3. Методы термической обработки
- (Т). Физическая сущность.

Классификация.

Технологические возможности.

4.4. Методы магнитной обработки (Мг).

Физическая сущность.

Технологические возможности.

4.5. Методы лучевой обработки (Л).

Физическая сущность. Технологические возможности.

4.6. Методы акустической обработки (Ак).

Физическая сущность.

Технологические возможности.

- 4.7. Комбинированные методы обработки (К).
- 4.7.1. Общие принципы

построения комбинированных методов обработки. Принцип комбинирования физических эффектов. Комбинирование кинематических схем. Параметрический принцип комбинирования.

4.7.2. Классификация и разновидности комбинированных методов обработки.

4.7.3. Физическая сущность и технологические

возможности комбинированных методов обработки:

- методы механоэлектрической обработки (МЭ),
- методы механохимической обработки (МХ),
- методы механоэлектрохимической обработки (МЭХ),
- методы электрохимической обработки (ЭХ),
- методы механотермической обработки (МТ)
- методы механомагнитной обработки (ММг),
- методы химико-термической обработки (XT),
- методы механохимико-термической обработки (MXT),
- методы механотермомагнитной. обработки (МТМг),
- методы механоакустической обработки (Мак),
- методы лазерно-искровой обработки (ЛаИс),
- метода лазерно-химико-термической обработки (ЛХТ),
- методы механолазерной обработки (МЛ),
- методы светогидравлической обработки (СГ).

<u>Раздел 5.</u> Механико-технологические особенности обработки типовых поверхностей заготовок.

- 5.1. Обрабатываемая заготовка комплекс взаимосвязанных поверхностей. Классификация обрабатываемых поверхностей: наружные; внутренние (отверстия); плоские; фасонные; резьбовые; зубчатые; шлицевые; шпоночные.
- 5.2. Классификация наружных поверхностей: цилиндрические, конические, гладкие, ступенчатые, торцевые. Методы обработки наружных поверхностей тел вращения: обработка точением с про- дольной и поперечной подаче и; обработка шлифованием с продольной и поперечной подачей; бесцентровое шлифование, обработка поверхностно-пластическим деформированием. Типовые примеры обработки наружных цилиндрических поверхностей, типовые планы обработки поверхностей для достижения заданной точности и качества поверхности.
- 5.3. Классификация внутренних поверхностей. Методы, обработки внутренних поверхностей: обработка лезвийным и абразивным инструментом, обработки поверхностным пластическим деформированием. Типовые примеры обработки.

Типовые планы обработки для достижения заданной точности и качества поверхности.

- 5.4. Методы обработки плоских поверхностей: фрезерование; строгание; долбление; протягивание; шлифование; пластическое деформирование. Типовые примеры обработки. Типовые планы обработки для достижения заданной точности и качества поверхности.
- 5.5. Методы обработки фасонных поверхностей. Классификация фасонных поверхностей. Два основных метода обработки фасонных поверхностей: фасонным инструментом; обычным инструментом с заданием траектории движения различными способами (по копиру, по программе). Типовые примеры обработки.
- 5.6. Методы обработки резьбовых поверхностей. Классификация резьбовых поверхностей. Типовые примеры обработки: резцами; гребенками; плашками; самораскрывающимися резьбовыми головками; фрезами; метчиками; шлифованием; накатыванием резьбы.
- 5.7. Методы формообразования зубьев зубчатых колес. Классификация зубчатых поверхностей, основные технические требования. Типовые примеры обработки:

нарезание методом копирования; методом обкатывания; накатыванием; отделочная обработка зубьев, шевингование, притирка, шлифование, упрочняющая обработка.

- 5.8. Методы обработки шлицевых поверхностей.Классификация, основные технические требования.Типовые примеры обработки:
 - обработка шлицевых валов;
 - обработка шлицевых отверстий.
- 5.9. Методы обработки шпоночных канавок.Классификация. Типовые примеры обработки:
 - шпоночных канавок на валах;
 - шпоночных канавок в отверстиях.

<u>Раздел 6.</u> Пути создания новых методов обработки [1].

6.1. Перспективы совершенствования методов обработки. Пути создания новых методов обработки.

3. СОДЕРЖАНИЕ КОНТРОЛЬНОЙ РАБОТЫ

1. Охарактеризовать понятие качества поверхности деталей машин и параметры, его определявшие.

Перечислить параметры шероховатости поверхности (по ГОСТ 2789-73), твердости, остаточных напряжений, дать их краткую характеристику, указать влияние на эксплуатационные свойства деталей машин.

- 2. Представить классификации методов обработки по: виду затрачиваемой энергии, технологическому назначению, применяемому инструменту и сущности формообразования.
- 3. По сумме трех последних цифр зачетной книжки (см. Приложение) выбрать метод обработки, для которого представить:
 - назначение метода;
 - схему обработки с указанием движения инструмента и заготовки;
 - оборудование и применяемый инструмент;
 - достигаемые параметры точности и шероховатости поверхности;
 - технологические возможности;
- 4. Получить у преподавателя задание (чертеж детали с указанием поверхности, подлежащей обработке). Для данной поверхности:

- обосновать количество и состав этапов и методов обработки;
- рассчитать общее и частные уточнения;
- составить возможные планы ее обработки;
- исходя из формы детали, наличия других обрабатываемых поверхностей, и принципа концентрации операций для серийного производства выбрать наиболее рациональные планы обработки.

ПРИЛОЖЕНИЕ

Вариант задания №3 выбирается по сумме трех последних цифрзачетной книжки:

Сумма трех	Метод обработки
последнихцифр	
зачетной книжки	
0	Обработка свободным абразивом
1	Точение
2	Фрезерование
3	Строгание
4	Долбление
5	Протягивание
6	Сверление
7	Зенкерование
8	Развертывание
9	Шабрение
10	Растачивание
11	Шевингование

12	Наружнее цилиндрическое	
	шлифование	
13	Плоское шлифование	
14	Внутреннее цилиндрич.	
	шлифование	
15	Хонингование	
16	Бесцентровое шлифование	
17	Притирка	
18	Полирование	
19	Суперфиниш	
20	Зенкование, цекование	
21	Дорнование	
22	Обкатывание, раскатывание	
23	Лазерная обработка	
24	Электроэрозионная обработка	
25	Аноднохимическая обработка	
26	Анодномеханическая обработка	
27	Ультразвуковая обработка	